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Abstract Given a graph H, we say a graph G is H-saturated if G does not
contain H as a subgraph and the addition of any edge e′ 6∈ E(G) results in
H as a subgraph. In this paper, we construct (K4 − e)-saturated graphs with
|E(G)| either the size of a complete bipartite graph, a 3-partite graph, or in
the interval

[
2n− 4,

⌊
n
2

⌋ ⌈
n
2

⌉
− n+ 6

]
. We then extend the (K4−e)-saturated

graphs to (Kt − e)-saturated graphs.

Keywords K4 − e · Kt − e · saturated · edge spectrum

1 Introduction

The study of saturated graphs has seen a recent surge in popularity. A graph
G is H-saturated if, given a graph H, G does not contain a copy of H but
the addition of any edge e 6∈ E(G) creates at least one copy of H within G.
The question of the minimum number of edges of an H-saturated graph on
n vertices, known as the saturation number and denoted sat(n,H), has been
addressed for many different types of graphs. The saturation number contrasts
the popular question of the maximum number of edges possible in a graph G
on n vertices that does not contain a copy of H, known as the Turán number
and denoted ex(n,H). Now, the topic of interest is the problem of finding the
edge spectrum for H-saturated graphs. The edge spectrum of the family of H-
saturated graphs on n vertices is the set of all possible sizes of an H-saturated
graph. For terms not defined here see [4].
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We are interested, then, in constructing graphs of size m that are H-
saturated with sat(n,H) ≤ m ≤ ex(n,H) and determining if such a graph
exists for every possible value of m. This has been explored for few graphs H,
including K3,Kt and Pt. The spectrum for K3-saturated graphs was found in
1995 by Barefoot, Casey, Fisher, Fraghnaugh, and Harary [3]. In [1], Amin,
Faudree, and Gould found the spectrum for K4-saturated graphs and in [2]
Amin, Faudree, Gould and Sidorowicz found the spectrum for Kt, t ≥ 4. Con-
tinuing this work, Gould, Tang, Wei, and Zhang addressed the edge spectrum
of small paths [6].

One goal of this paper is to determine the edge spectrum of (K4 − e)-
saturated graphs, where K4−e is the complete graph on four vertices with one
edge removed. The graph K4 − e is isomorphic to the graph comprised of two
triangles that share an edge, sometimes called a book. Further, sat(n,K4−e) =⌊
3(n−1)

2

⌋
(see [5]). The saturation number, sat(n,K4 − e), can be realized as

the edge count of the graph on n vertices formed by n−1
2 triangles joined at

a single vertex v when n is odd (Figure 1(a)) and n−2
2 triangles joined at the

vertex v with an edge from v to the remaining vertex when n is even (Figure
1(b)). These graphs are (K4−e)-saturated as each vertex, except perhaps one,
is a vertex of a triangle and an additional edge creates a second triangle with
v, forming a copy of (K4 − e).

(a)

v

(b)

v

Figure 1

The Turán number for an n vertex (K4−e)-free graph G is ex(n,K4−e) =
bn2 cd

n
2 e and can be realized by the complete bipartite graph Kbn2 c,d

n
2 e. The

goal now is to construct graphs of size m that are (K4 − e)-saturated with⌊
3(n−1)

2

⌋
≤ m ≤

⌊
n
2

⌋ ⌈
n
2

⌉
and to determine if such a graph exists for every

possible value of m.

2 Proof of Lower Bound

We begin with some useful lemmas.

Lemma 1 If G is a connected (K4 − e)-saturated graph, then diam(G) = 2.

Proof Suppose thatG is a connected (K4−e)-saturated graph. Let x, y ∈ V (G)
with xy 6∈ E(G). Then G+xy contains a K4−e so there is a vertex w ∈ V (G),
distinct from x and y such that x,w, y is a path in G. Since this must be true
for any pair of vertices in G, diam(G) = 2. �
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Lemma 2 If G is a (K4 − e)-saturated graph on n vertices with a cut vertex,

then |E(G)| =
⌊
3(n−1)

2

⌋
.

Proof Let G be a (K4 − e)-saturated graph with a cut vertex, say x. By
Lemma 1, diam(G) = 2 so every such path from u to v is of length 2, that is
x is adjacent to every vertex y ∈ V (G− x). Since it is possible to add an edge
between two vertices of degree one without creating a copy of (K4− e) and G
is (K4− e)-saturated, there is a maximal matching in V (G−x) that covers all

except possibly one vertex. This creates
⌊
3(n−1)

2

⌋
edge disjoint triangles, with

one additional edge incident to x if n is even. This is precisely the graph that

realizes the saturation number with an edge count of |E(G)| =
⌊
3(n−1)

2

⌋
.�

Aside from the saturation number, small edge counts are not realizable by
(K4 − e)-saturated graphs. The following lemmas show the lower bound on
the edge spectrum of (K4 − e)-saturated graphs.

Lemma 3 Let G be a connected (K4−e)-saturated graph with minimum degree
δ(G) ≥ 3 on n ≥ 10 vertices. Then |E(G)| ≥ 2n− 4.

Proof Let G be a connected (K4 − e)-saturated graph with minimum degree
δ(G) ≥ 3. If δ(G) ≥ 4, then |E(G)| ≥ 2n > 2n − 4. Therefore there exists a
vertex of degree exactly 3, say u. Note that diam(G) = 2 by Lemma 1. Let u be
adjacent to exactly three other vertices of G, say x, y and z. Let X = {x, y, z}
and let A = V (G) − {u, x, y, z}. Since diam(G) = 2, every vertex in A is
adjacent to at least one of the vertices in X. Let A1 be the set of vertices in
A that are adjacent to exactly one vertex of X, let A2 be the vertices in A
adjacent to exactly two vertices of X and let A3 be the vertices in A adjacent
to all vertices of X. The minimum degree condition implies that each v ∈ A1

must be adjacent to at least two other vertices in A and each w ∈ A2 must be
adjacent to at least one other vertex in A. So we have a minimum edge count
as follows:

|E(G)| ≥ 3 + |A1|+ 2|A2|+ 3|A3|+
⌈
2|A1|+|A2|

2

⌉
≥ 3 + 2|A1|+ 2|A2|+

⌈
|A2|
2

⌉
+ 3|A3|

= 3 + 2(n− |A3| − 4) +
⌈
|A2|
2

⌉
+ 3|A3|

= 2n− 5 +
⌈
|A2|
2

⌉
+ |A3|.

If either A2 or A3 is non-empty, we are done. Thus, assume that |A2| =
|A3| = 0. Then |E(G)| ≥ 2n− 5 and it remains to show that there is at least
one additional edge in G.

If at least one of the edges xy, yz, xz is in E(G), we are done. Assume that
xy, yz, and xz are not edges of G. Since δ(G) = 3, there must be at least two
vertices of A1 adjacent to x, two vertices of A1 adjacent to y and two vertices
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of A1 adjacent to z. Then each vertex adjacent to x must be adjacent to at
least one vertex adjacent to y and at least one vertex adjacent to z. Each
vertex adjacent to y must be adjacent to at least one vertex adjacent to x and
one vertex adjacent to z. Each vertex adjacent to z must be adjacent to at
least one vertex adjacent to x and one vertex adjacent to y. This requirement
allows the minimum possible edge count to remain at |E(G)| ≥ 2n − 5 as it
requires at least |A1| edges amongst the vertices of A1. However, this graph is
not (K4−e)-saturated, as adding xy does not create a copy of K4−e, so there
must be at least one additional edge. This completes the proof of the lemma.
�

Lemma 4 Let G be a 2-connected (K4 − e)-saturated graph on m edges and
n ≥ 10 vertices. Then m ≥ 2n− 4.

Proof Let G be a (K4 − e)-saturated, 2-connected graph on m edges. Since G
is (K4 − e)-saturated, diam(G) = 2 by Lemma 1 and it follows from Lemma
3, that m ≥ 2n − 4 if δ(G) ≥ 3. Suppose δ(G) = 2 with deg(z) = 2 for some
z ∈ V (G). Then z is adjacent to some x, y ∈ V (G) and we can partition
the remaining vertices of G into three sets A,B,C with A ⊆ N(x), B ⊆
N(x) ∩N(y) and C ⊆ N(y), (see Figure 2). Since G is 2-connected, A and B
cannot both be empty, as this would make y a cut vertex. Similarly, C and
B cannot both be empty. Note that if B 6= ∅ the edge from x to y is not in
E(G) as it would create a copy of K4 − e and for similar reasons, B must be
an independent set.

z

x y

A B C

Figure 2

Case 1: Suppose both A and C are empty and B is not empty.
Each vertex in B is adjacent to both x and y, which creates a copy of C4 for
each vertex of B with the vertices x, y and z. Adding the edge xy, any edge
between vertices of B, or the edge vz for some v ∈ B will create a K4 − e, so
the graph G is (K4 − e)-saturated. In this case, m = 2 + 2(n− 3) = 2n− 4.

Case 2: Suppose that A is empty and B,C are non-empty.
Since diam(G) = 2, there must be a path of length two from x to each w ∈ C
hence, there must be an edge from at least one v ∈ B to each w ∈ C. Since G
cannot contain a copy of K4 − e, each w ∈ C must be adjacent to a distinct
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vertex in B and hence |B| ≥ |C|. Then each w ∈ C is in a distinct triangle
and is not adjacent to another vertex in C or a copy of K4 − e would exist in
G. Additional edges will increase the edge count so |E(G)| must be at least

m ≥ 2 + 2|B|+ 2|C|
= 2 + 2(n− |C| − 3) + 2|C|
= 2n− 2|C|+ 2|C|+ 2− 6

= 2n− 4.

Note that by symmetry a similar argument holds when C is empty and A is
nonempty.

Case 3: Suppose that A and C are both non-empty with 1 ≤ |C| ≤ |A| and
B is empty.
Since G is (K4 − e)-saturated, xy must be an edge of G and there can be no
path of length 2 or more between any two vertices in A or between any two
vertices in C. Also, diam(G) = 2 implies that there is a u− w path of length
1 or 2 for each u ∈ A and each w ∈ C. So each u ∈ A must be adjacent to at

least
⌈
|C|
2

⌉
vertices of C. There must also be at least

⌊
|C|
2

⌋
additional edges,

either within C in the form of a matching, or between A and C if there is a
vertex of A that is not in an edge in A.

If |C| = 1, diam(G) = 2 requires that either w ∈ C is adjacent to all vertices

in A or w ∈ C is adjacent to
⌈
|A|
2

⌉
vertices in A and there are

⌊
|A|
2

⌋
edges

within A. In either case, |E(G)| ≥ 4+|A|+|A| = 2(n−3)+4 = 2n−2 > 2n−4.
Otherwise, we have the following edge count for G:

m ≥ 3 + |A|+ |C|+ |A|
⌈
|C|
2

⌉
+
⌊
|C|
2

⌋
= n+

⌈
|C|
2

⌉(
n−

⌈
|C|
2

⌉
−
⌊
|C|
2

⌋
− 3
)

+
⌊
|C|
2

⌋
= 2n− 4 +

(⌈
|C|
2

⌉
− 1
)
n−

⌈
|C|
2

⌉2
− 3

⌈
|C|
2

⌉
+ 4−

⌊
|C|
2

⌋(⌈
|C|
2

⌉
− 1
)

= 2n− 4 +
(⌈
|C|
2

⌉
− 1
)
−
(⌈
|C|
2

⌉
− 1
)(⌈

|C|
2

⌉
+ 4
)
−
⌊
|C|
2

⌋(⌈
|C|
2

⌉
− 1
)

= 2n− 4 +
(⌈
|C|
2

⌉
− 1
)

(n− |C| − 4).

Since
⌈
|C|
2

⌉
≥ 1 and |A| = n − |C| − 3 ≥ 1 clearly hold, it follows that

|E(G)| ≥ 2n− 4 is always true.

Case 4: Suppose that A,B and C are non-empty with 1 ≤ |C| ≤ |A|.
Then diam(G) = 2 implies that there must be a path of length at most 2 from
each u ∈ A to each w ∈ C. The vertices x and y cannot be adjacent as B is
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non-empty, which results in at least one C4 with v ∈ B, x, y and z. Also, the
vertices in B must be independent as any edge between two vertices in B will
result in a K4 − e with x and y. If some u ∈ A is not adjacent to any vertex
in A or B, then the edge uz does not create a copy of K4− e, hence the graph
is not (K4 − e)-saturated. So if a vertex u ∈ A is independent within A, then
uv ∈ E(G) for some v ∈ B and either uw or vw is an edge of G for every
w ∈ C. If a vertex u ∈ A is not independent within A, then uw ∈ E(G) for
some w ∈ C as an edge from A to B gives a K4 − e. By symmetry, the same
is true for vertices in C.

If |C| = 1, diam(G) = 2 requires that there is a path of length 1 or 2
between w ∈ C and each vertex in A. Since G is (K4 − e)-saturated, wv
is an edge in G for some v ∈ B and either vu or wu is also an edge of G

for some u ∈ A. Then w ∈ C is adjacent to at least
⌈
|A|−1

2

⌉
vertices in A

and there are at most
⌊
|A|−1

2

⌋
edges within A or from A to B. In any case,

|E(G)| ≥ 3 + |A|+ 2|B|+ 1 + |A| = 2(n− 4) + 4 = 2n− 4.

Otherwise, each u ∈ A must be adjacent to at least
⌈
|C|
2

⌉
vertices of C.

Then there must also be at least
⌊
|C|
2

⌋
additional edges, either within C in

the form of a matching, or between A and C if there is a vertex of A that is
not in an edge in A. This yields the following edge count of G:

m ≥ 2 + |A|+ 2|B|+ |C|+ |A|
⌈
|C|
2

⌉
+
⌊
|C|
2

⌋
= n− 1 + |B|+ (n− |B| − |C| − 3)

⌈
|C|
2

⌉
+
⌊
|C|
2

⌋
= 2n− 1 +

(⌈
|C|
2

⌉
− 1
)

(n− |B|)−
⌈
|C|
2

⌉2
− 3

⌈
|C|
2

⌉
−
(⌈
|C|
2

⌉
− 1
)⌊
|C|
2

⌋
= 2n− 5 +

(⌈
|C|
2

⌉
− 1
)(

n− |B| −
⌊
|C|
2

⌋)
−
(⌈
|C|
2

⌉
− 1
)(⌈

|C|
2

⌉
+ 4
)

= 2n− 5 +
(⌈
|C|
2

⌉
− 1
)

(n− |B| − |C| − 4).

= 2n− 5 +
(⌈
|C|
2

⌉
− 1
)

(|A| − 1).

So |E(G)| ≥ 2n − 4 if |C| ≥ 3 and |A| ≥ 2. However, if |A| = 1 then
|E(G)| ≥ 2n− 4, similar to the case when |C| = 1, so it remains to determine
the edge count of G when |A| = |C| = 2.

Suppose that C = {w,w′}. If ww′ ∈ E(G), wv and w′v are not edges of G
for any v ∈ B. Then diam(G) = 2 implies that each u ∈ A is adjacent to w or
w′. Also, since G is (K4 − e)-saturated, either there is an edge in A or there
is an edge from A to B as adding one of those edges does not create a copy of
K4−e. This yields |E(G)| ≥ 6+2|B|+2+1+1 = 10+2(n−7) = 2n−4. On the
other hand, if ww′ 6∈ E(G), both wv and w′v′ are edges of G for distinct v ∈ B
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and v′ ∈ B without creating a copy of K4 − e and each vertex of C must be
adjacent to at least one vertex in A such that |E(G)| ≥ 6+2|B|+2+2 = 2n−4.

This completes the proof of the lemma. �

3 Proof of Theorem

We will now show that there is a (K4 − e)-saturated graph for every integer
value of m in the interval [2n− 4,

⌊
n
2

⌋ ⌈
n
2

⌉
−n+ 6] by combining two different

constructions.

Theorem 1 There exists a (K4− e)-saturated graph on n ≥ 6 vertices and m
edges where 2n− 4 ≤ m ≤

⌊
n
2

⌋ ⌈
n
2

⌉
− n+ 6.

Proof Case 1: Suppose 2n− 4 ≤ m ≤ 3n− 9.

(a)

x y

A

B

C
(b)

x z y

A

B

Figure 3

To construct (K4−e)-saturated graphs we modify K2,n−2 and K3,n−3. For
the graph in Figure 3(a), we form a set B by removing at most

⌊
n−3
2

⌋
− 1

vertices from A so that the vertices are adjacent to x and to distinct vertices
in A and we form a set C with a single vertex from A so that it is adjacent
to y and a vertex in A that is not adjacent to any vertex in B. We then join
each vertex of B to the vertex in C.

We now show the resulting graphs are (K4 − e)-saturated. First, the edge
xy will create at least two triangles on that edge if |A| ≥ 2. Any edge added
within A will create a K4 − e with x and y and any edge added within B (or
within C) will create a triangle with x (or y, respectively), which creates a
copy of K4 − e as every pair of vertices in B (or C) is a part of two triangles.
Each edge from A to B is an edge of a triangle with x so any additional edge
between u ∈ A and v ∈ B will create another triangle with x and the edge
xv, resulting in a copy of (K4− e). Similarly, an edge between any vertex in A
and w ∈ C with create a K4− e. Finally, any additional edge from x to w ∈ C
or y to v ∈ B will create a (K4 − e) with the triangle constructed between x
or y and B or C, sharing the edge from A to w or v, respectively.
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For the graph in Figure 3(a), if |A| = n− b− 3 where |B| = b and |C| = 1,
the edge count is:

m = 2|A|+ 3|B|+ 2

= 2(n− b− 3) + 3b+ 2

= 2n− 4 + b.

So we have an edge count of m = 2n − 4 + b, which increases by one as the
size of B increases by one. Since 0 ≤ |B| ≤

⌊
n−3
2

⌋
− 1, we have 2n− 4 ≤ m ≤

2n− 4 +
⌊
n−2
2

⌋
− 1 =

⌊
5n
2

⌋
− 6.

For the graph in Figure 3(b), we form a set B with vertices from A so
that the vertices are adjacent to x and to distinct vertices in A. Similar to the
graphs in Figure 3(a), such graphs are (K4−e)-saturated and, if |A| = n−b−3
where |B| = b, they have edge count:

m = 3|A|+ 2|B|
= 3(n− b− 3) + 2b

= 3n− 9− b.

So the edge count decreases by one as the size of B increases by one. Since
0 ≤ |B| ≤

⌊
n−3
2

⌋
, we have 3n − 9 ≥ m ≥ 3n − 9 −

⌊
n−3
2

⌋
=
⌊
5n
2

⌋
− 7, which

clearly intersects the interval constructed with the graphs of Figure 3(a). Thus,
we have constructed saturated graphs of size 2n − 4 to 3n − 9 for n ≥ 6 and
this case completes the proof of Theorem 1 for n ≤ 11.

Case 2: Suppose 3n− 9 ≤ m ≤ 4n− 18.

We can similarly modify the complete bipartite graphs K3,n−3 and K4,n−4
by adding triangles to the vertices in the smaller vertex set in the same way
as before, to obtain a (K4 − e)-saturated graph for n ≥ 11.

(a)

x y z

A

B C

D (b)

x y z w

A

B

C

Figure 4

For the graph in Figure 4(a), we form a set B with vertices from A so
that the vertices are adjacent to x and to distinct vertices in A. We form a
set C with the vertices from A that are adjacent to z and distinct vertices
in A and we a form set D with vertices from A that are adjacent to y and
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distinct vertices in A. In forming the sets B,C and D, it is necessary that
their neighbors in A do not overlap. We then join each vertex of B and C to
all of D. If |A| = n − b − c − d − 3 where |B| = b, |C| = c and |D| = d ≥ 2,
then the edge count is:

m = 3|A|+ 2|B|+ 2|C|+ 2|D|+ |B||D|+ |C||D|

= 3(n− b− c− d− 3) + 2b+ 2c+ (2 + b+ c)d

= 3n− b− c+ (b+ c− 1)d− 9.

If we fix |B| = |C| = 1, we have an edge count of m = 3n− 11 + d, which
increases by one as the size of D increases by one. Since the construction
requires 2 ≤ |B| + |C| + |D| ≤

⌊
n−3
2

⌋
, we have 2 ≤ |D| ≤

⌊
n−3
2

⌋
− 2 so that

3n− 9 ≤ m ≤ 3n− 11 +
⌊
n−3
2

⌋
− 2 =

⌊
7n
2

⌋
− 13.

For the graph in Figure 4(b), we form a set B with vertices from A so that
the vertices are adjacent to x and to distinct vertices in A, we form a set C
with the vertices from A that are adjacent to w and distinct vertices in A.
Then we join each vertex in C to all vertices in B. If |A| = n− b− c− 4 where
|B| = b and |C| = c, then the edge count is:

m = 4|A|+ 2|B|+ 2|C|+ |B||C|

= 4(n− b− c− 4) + 2b+ 2c+ bc

= 4n− 2b− 2c+ bc− 16.

Thus, if we fix |C| = c = 1, we have an edge count of m = 4n−18−b, which
decreases by one as the size of B increases by one. Then 0 ≤ |B| ≤

⌊
n−4
2

⌋
− 1

implies 4n − 18 ≥ m ≥ 4n − 18 −
(⌊

n−4
2

⌋
− 1
)

=
⌊
7n
2

⌋
− 15, which intersects

the interval for the graphs of Figure 4(a). Thus, we have constructed graphs
of size 3n− 9 to 4n− 18 for n ≥ 11.

Case 3: Suppose 4n− 18 ≤ m ≤
⌊
n
2

⌋ ⌈
n
2

⌉
− n+ 5.

We blow-up the graph C5 such that each vertex becomes a set of inde-
pendent vertices with adjacencies according to the original C5, where an edge
xy ∈ E(C5) becomes a Ks,t, when x ∈ V (C5) blows-up to a set of s vertices
and y ∈ V (C5) blows-up to a set of t vertices. Then any edge added within
a set of independent vertices will create at least two triangles on that edge
with vertices of two adjacent sets. Also, any edge added between vertices in
two different vertex sets will create at least two triangles on that edge with
vertices of the common adjacent set, if the common adjacent set has order at
least 2. As such, a blown-up C5 in Figure 5(a), with at least two vertices in
each vertex set, is (K4 − e)-saturated.
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(a)
E

D

B

A

C

(b)

E

D

B

A

C

Figure 5

The blown-up C5 in Figure 5(b), which we denote as G = C5[A,D,E,B,C], is
(K4− e)-saturated with |A| = n− b− c− 5 provided |B| = b ≥ 2, |C| = c ≥ 2,
|D| = 2 and |E| = 3 with |E(G)| = m given by the products of the orders of
consecutive vertex sets, hence:

m = |A||D|+ |D||E|+ |E||B|+ |B||C|+ |C||A|
= 2(n− b− c− 5) + 2(3) + 3b+ bc+ c(n− b− c− 5)

= cn+ 2n− c2 − 7c+ b− 4

= (n− c)(c+ 2)− 5c+ b− 4.

Then for fixed values of c, when b increases by 1, that is, as vertices are
moved from A to B, the edge count increases by 1. To maintain at least two
vertices in each set of the blown-up C5, we must have b ∈ [2, n − c − 7]. If
we let b = n − c − 7 for fixed n, then we have m = cn + 3n − c2 − 8c − 11,
which is maximized when c =

⌈
n
2

⌉
− 4 such that c ∈ [2,

⌈
n
2

⌉
− 4]. Then the

smallest edge count for G is when a = n − 9, b = 2, c = 2 and is m =
(n−2)(4)−10 + 2−4 = 4n−20 ≤ 4n−18 and the largest possible edge count
is given when a = 2, b =

⌊
n
2

⌋
− 3, c =

⌈
n
2

⌉
− 4 and is:

m =
(
n−

⌈
n
2

⌉
+ 4
) (⌈

n
2

⌉
− 4 + 2

)
− 5

(⌈
n
2

⌉
− 4
)

+
(⌊

n
2

⌋
− 3
)
− 4

=
(⌊

n
2

⌋
+ 4
) (⌈

n
2

⌉
− 2
)
− 5

⌈
n
2

⌉
+ 20 +

⌊
n
2

⌋
− 3− 4

=
⌈
n
2

⌉ ⌊
n
2

⌋
− 2

⌊
n
2

⌋
+ 4

⌈
n
2

⌉
− 8− 5

⌈
n
2

⌉
+ 13 +

⌊
n
2

⌋
=
⌈
n
2

⌉ ⌊
n
2

⌋
−
⌊
n
2

⌋
−
⌈
n
2

⌉
+ 5

=
⌈
n
2

⌉ ⌊
n
2

⌋
− n+ 5.

Next, we check that the entire interval
[
4n− 18,

⌈
n
2

⌉ ⌊
n
2

⌋
− n+ 5

]
of length⌈

n
2

⌉ ⌊
n
2

⌋
−5n+24 is covered. For each fixed c, we will have an interval of values

Sc determined by the range of values for b, namely, each interval has a left
endpoint given when b = 2 such that the interval starts at m = (n − c)(c +
2) − 5c − 2. So we have a (K4 − e)-saturated graph on n vertices and m
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edges for an interval of length (n − c − 7) − 2 + 1 = n − c − 8 and we have(⌈
n
2

⌉
− 4
)
−2 + 1 =

⌈
n
2

⌉
−5 such intervals. Then the next consecutive interval

will start at:

m = (n− (c+ 1))(c+ 1 + 2)− 5(c+ 1)− 2

= (n− c)(c+ 2) + (n− c)− (c+ 2)− 1− 5c− 7

= (n− c)(c+ 2)− 5c− 2 + (n− 2c− 8).

Thus, the end of each interval Sc will overlap with the next interval Sc+1

in the first (n− c− 8)− (n− 2c− 8) = c numbers. There are
⌈
n
2

⌉
− 5 intervals,

each with (n − c − 8) − (c) + 1 = n − 2c − 7 distinct elements. As the lowest
interval starts at 4n−18 and the largest interval ends at

⌈
n
2

⌉ ⌊
n
2

⌋
−n+ 5 with

each interval having a nonempty overlap with the next highest interval, all
values are covered.

Case 4: Suppose m =
⌈
n
2

⌉ ⌊
n
2

⌋
− n+ 6.

Similar to the first two cases, we modify the complete bipartite Kbn
2 c,dn

2 e.
Let A be the first partite set and B the second partite set. We remove all edges
from one vertex v ∈ A and all edges from one vertex v′ ∈ B. We add an edge
from v to a vertex a ∈ A and a vertex b ∈ B, creating a triangle. Similarly, we
add an edge from v′ to a vertex a′ ∈ A and a vertex b′ ∈ B, where a 6= a′ and
b 6= b′. Finally, we add the edge vv′. Since this is the same modification as in
Case 1, the resulting graph is similarly (K4− e)-saturated with an edge count
of m =

(⌈
n
2

⌉
− 1
) (⌊

n
2

⌋
− 1
)

+ 5 =
⌈
n
2

⌉ ⌊
n
2

⌋
− n+ 6.

This completes the proof of the theorem. �

4 Graphs in
[⌈

n
2

⌉ ⌊
n
2

⌋
− n + 7,

⌊
n
2

⌋ ⌈
n
2

⌉]
We conjecture that graphs with sizes in the interval

[⌈
n
2

⌉ ⌊
n
2

⌋
− n+ 7,

⌈
n
2

⌉ ⌊
n
2

⌋]
are of two types: complete bipartite graphs with partite sets of nearly equal
size, and 3-partite graphs with two partite sets of nearly equal size and one
partite set of order one. The complete bipartite graph is (K4 − e)-saturated
as adding an edge between any two nonadjacent vertices will create a K4 − e.
In the 3-partite graph, we let the two larger partite sets induce a complete
bipartite graph and the single vertex set be adjacent to exactly one vertex in
each of the other partite sets. This 3-partite graph, then, contains a complete
bipartite graph on n − 1 vertices as well as a single triangle and is (K4 − e)-
saturated. If an edge is added within either of the independent sets a copy of
K4− e is created and if an edge is added between a vertex of the triangle and
any other vertex of the graph, a K4 − e is created. Such graphs would have
the highest possible edge counts when the larger partite sets are almost the
same order.

Let the graph G be a complete bipartite graph with one partite set of
order

⌊
n
2

⌋
+ k. Then the size of G is m =

(⌊
n
2

⌋
+ k
) (⌈

n
2

⌉
− k
)
. This gives
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a few additional values of m in the interval
[⌈

n
2

⌉ ⌊
n
2

⌋
− n+ 7,

⌈
n
2

⌉ ⌊
n
2

⌋]
. Let

the graph H be a 3-partite graph described above with partite sets of order⌈
n
2

⌉
+ k,

⌊
n
2

⌋
− k − 1, and 1. Then the size of H is:

m =
(⌈

n
2

⌉
+ k
) (⌊

n
2

⌋
− k − 1

)
+ 2

=
⌈
n
2

⌉ ⌊
n
2

⌋
− k

⌈
n
2

⌉
−
⌈
n
2

⌉
+ k

⌊
n
2

⌋
− k2 − k + 2.

Which is
⌈
n
2

⌉ ⌊
n
2

⌋
−
⌈
n
2

⌉
− k2 − k + 2 for n even and

⌈
n
2

⌉ ⌊
n
2

⌋
−
⌈
n
2

⌉
−

k2 − 2k + 2 for n odd. For small values of k, this gives additional values of
m ∈

[⌈
n
2

⌉ ⌊
n
2

⌋
− n+ 7,

⌈
n
2

⌉ ⌊
n
2

⌋
−
⌈
n
2

⌉
+ 2
]
. We believe that this completes

the edge spectrum of (K4− e)-saturated graphs since the graphs G and H are
completely saturated with four vertex complete graphs missing two edges.

Thus, the edge spectrum of (K4 − e)-saturated graphs has a jump from
the saturation number to the next possible edge count, is continuous in the
interval

[
2n− 4,

⌈
n
2

⌉ ⌊
n
2

⌋
− n+ 6

]
and then,we believe, has sporadic values in

the interval
[⌈

n
2

⌉ ⌊
n
2

⌋
− n+ 7,

⌈
n
2

⌉ ⌊
n
2

⌋]
.

5 Constructing (Kt − e)-saturated Graphs

Given a graph G that is (K4− e)-saturated, it is possible to construct a graph
G′ = G+ v that is (K5− e)-saturated where G+ v is constructed by adding a
vertex v and all edges from v to each vertex in G. Then, by joining a vertex to
each of the (K4−e)-saturated graphs we have constructed, there is a (K5−e)-
saturated graph on n vertices for each edge count in[

2(n− 1)− 4 + (n− 1),
⌊
n−1
2

⌋ ⌈
n−1
2

⌉
− (n− 1) + 6 + (n− 1)

]
=
[
3n− 7,

⌊
n−1
2

⌋ ⌈
n−1
2

⌉
+ 6
]
.

There are also (K5 − e)-saturated graphs for sporadic values of m in the in-
terval

[⌊
n−1
2

⌋ ⌈
n−1
2

⌉
+ 7,

⌊
n−1
2

⌋ ⌈
n−1
2

⌉
+ n− 1

]
.

Similarly, given a graph H that is (Kt−1 − e)-saturated, it is possible to con-
struct a graph H ′ = H+v that is (Kt−e)-saturated where H+v is constructed
by adding a vertex v and all edges from v to each vertex in H. So joining t−4
vertices, one at a time, to a (K4− e)-saturated graph on n− t+ 4 vertices will
result in a (Kt − e)-saturated graph. As such, there is a (Kt − e)-saturated
graph on n vertices and m edges for each value in the interval[
2n− 2t+ 4 +

∑t−4
i=1(n− t+ 3 + i),

⌊
n−t+4

2

⌋ ⌈
n−t+4

2

⌉
− n+ t+ 2 +

∑t−4
i=1(n− t+ 3 + i)

]
=
[
(t− 2)n− t2

2
+ 3

2
t− 2,

(⌊
n−t
2

⌋
+ 2
) (⌈

n−t
2

⌉
+ 2
)
− (n− t) + n(t− 4)− t2

2
+ 7

2
t− 4

]
=
[
(t− 2)n−

(
t−1
2

)
− 1,

⌊
n−t
2

⌋ ⌈
n−t
2

⌉
+ (t− 3)n−

(
t−2
2

)
− 1
]
.
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Also, there are (Kt − e)-saturated graphs for sporadic values of m in[⌊
n−t
2

⌋ ⌈
n−t
2

⌉
+ (t− 3)n−

(
t−2
2

)
+ 4,

⌊
n−t
2

⌋ ⌈
n−t
2

⌉
+ (t− 2)n−

(
t−1
2

)
− 1
]
.
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